The time-to-event model for outcome
is specified with this method. Any adjustment terms can be specified.
For ITT and PP estimands the treatment_var
is not specified as it is automatically defined as
assigned_treatment
. Importantly, the modelling of "time" is specified in this model with arguments for
trial start time and follow up time within the trial.
Usage
set_outcome_model(object, ...)
# S4 method for class 'trial_sequence'
set_outcome_model(
object,
treatment_var = ~0,
adjustment_terms = ~1,
followup_time_terms = ~followup_time + I(followup_time^2),
trial_period_terms = ~trial_period + I(trial_period^2),
model_fitter = stats_glm_logit(save_path = NA)
)
# S4 method for class 'trial_sequence_ITT'
set_outcome_model(
object,
adjustment_terms = ~1,
followup_time_terms = ~followup_time + I(followup_time^2),
trial_period_terms = ~trial_period + I(trial_period^2),
model_fitter = stats_glm_logit(save_path = NA)
)
# S4 method for class 'trial_sequence_PP'
set_outcome_model(
object,
adjustment_terms = ~1,
followup_time_terms = ~followup_time + I(followup_time^2),
trial_period_terms = ~trial_period + I(trial_period^2),
model_fitter = stats_glm_logit(save_path = NA)
)
# S4 method for class 'trial_sequence_AT'
set_outcome_model(
object,
treatment_var = "dose",
adjustment_terms = ~1,
followup_time_terms = ~followup_time + I(followup_time^2),
trial_period_terms = ~trial_period + I(trial_period^2),
model_fitter = stats_glm_logit(save_path = NA)
)
Arguments
- object
A trial_sequence object
- ...
Parameters used by methods
- treatment_var
The treatment term, only used for "as treated" estimands. PP and ITT are fixed to use "assigned_treatment".
- adjustment_terms
Formula terms for any covariates to adjust the outcome model.
- followup_time_terms
Formula terms for
followup_time
, the time period relative to the start of the trial.- trial_period_terms
Formula terms for
trial_period
, the time period of the start of the trial.- model_fitter
A
te_model_fitter
object, e.g. fromstats_glm_logit()
.
Examples
trial_sequence("ITT") |>
set_data(data_censored) |>
set_outcome_model(
adjustment_terms = ~age_s,
followup_time_terms = ~ stats::poly(followup_time, degree = 2)
)
#> Trial Sequence Object
#> Estimand: Intention-to-treat
#>
#> Data:
#> - N: 725 observations from 89 patients
#> id period treatment x1 x2 x3 x4 age age_s
#> <int> <int> <num> <num> <num> <int> <num> <num> <num>
#> 1: 1 0 1 1 1.146148362 0 0.7342030 36 0.08333333
#> 2: 1 1 1 1 0.002200337 0 0.7342030 37 0.16666667
#> ---
#> 724: 99 6 1 1 -0.033762356 1 0.5752681 71 3.00000000
#> 725: 99 7 0 0 -1.340496520 1 0.5752681 72 3.08333333
#> outcome censored eligible time_on_regime
#> <num> <int> <num> <num>
#> 1: 0 0 1 0
#> 2: 0 0 0 1
#> ---
#> 724: 0 0 0 1
#> 725: 1 0 0 2
#>
#> IPW for informative censoring:
#> - No weight model specified
#>
#> Sequence of Trials Data:
#> - Use set_expansion_options() and expand_trials() to construct the sequence of trials dataset.
#>
#> Outcome model:
#> - Formula: outcome ~ assigned_treatment + age_s + stats::poly(followup_time, degree = 2) + trial_period + I(trial_period^2)
#> - Treatment variable: assigned_treatment
#> - Adjustment variables: age_s
#> - Model fitter type: te_stats_glm_logit
#>
#> Use fit_msm() to fit the outcome model
#>