Skip to contents

[Experimental]

Usage

load_expanded_data(
  object,
  p_control = NULL,
  period = NULL,
  subset_condition = NULL,
  seed = NULL
)

# S4 method for class 'trial_sequence'
load_expanded_data(
  object,
  p_control = NULL,
  period = NULL,
  subset_condition = NULL,
  seed = NULL
)

Arguments

object

An object of class trial_sequence.

p_control

Probability of selecting a control, NULL for no sampling (default).

period

An integerish vector of non-zero length to select trial period(s) or NULL (default) to select all trial periods.

subset_condition

A string or NULL (default). subset_condition will be translated to a call (in case the expanded data is saved as a data.table or in the csv format) or to a SQL-query (in case the expanded data is saved as a duckdb file).

The operators "==", "!=", ">", ">=", "<", "<=", %in%", "&", "|" are supported. Numeric vectors can be written as c(1, 2, 3) or 1:3. Variables are not supported.

Note: Make sure numeric vectors written as 1:3 are surrounded by spaces, e.g. a %in% c( 1:4 , 6:9 ), otherwise the code will fail.

seed

An integer seed or NULL (default).

Note: The same seed will return a different result depending on the class of the te_datastore object contained in the trial_sequence object.

Value

An updated trial_sequence object, the data is stored in slot @outcome_data as a te_outcome_data object.

Details

This method is used on trial_sequence objects to read, subset and sample expanded data.

Examples

# create a trial_sequence-class object
trial_itt_dir <- file.path(tempdir(), "trial_itt")
dir.create(trial_itt_dir)
trial_itt <- trial_sequence(estimand = "ITT") |>
  set_data(data = data_censored) |>
  set_outcome_model(adjustment_terms = ~ x1 + x2)

trial_itt_csv <- set_expansion_options(
  trial_itt,
  output = save_to_csv(file.path(trial_itt_dir, "trial_csvs")),
  chunk_size = 500
) |>
  expand_trials()

# load_expanded_data default behaviour returns all trial_periods and doesn't sample
load_expanded_data(trial_itt_csv)
#> Trial Sequence Object 
#> Estimand: Intention-to-treat 
#>  
#> Data: 
#>  - N: 725 observations from 89 patients 
#>         id period treatment    x1           x2    x3        x4   age      age_s
#>      <int>  <int>     <num> <num>        <num> <int>     <num> <num>      <num>
#>   1:     1      0         1     1  1.146148362     0 0.7342030    36 0.08333333
#>   2:     1      1         1     1  0.002200337     0 0.7342030    37 0.16666667
#>  ---                                                                           
#> 724:    99      6         1     1 -0.033762356     1 0.5752681    71 3.00000000
#> 725:    99      7         0     0 -1.340496520     1 0.5752681    72 3.08333333
#>      outcome censored eligible time_on_regime    wt
#>        <num>    <int>    <num>          <num> <num>
#>   1:       0        0        1              0     1
#>   2:       0        0        0              1     1
#>  ---                                               
#> 724:       0        0        0              1     1
#> 725:       1        0        0              2     1
#>  
#> IPW for informative censoring: 
#>  - No weight model specified 
#>  
#> Sequence of Trials Data: 
#> - Chunk size: 500 
#> - Censor at switch: FALSE 
#> - First period: 0 | Last period: Inf 
#>  
#> A TE Datastore CSV object 
#> N: 1558 observations 
#> Periods: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
#> Path: /tmp/Rtmp6r0dfl/trial_itt/trial_csvs 
#> Columns: id, trial_period, followup_time, outcome, weight, treatment, x1, x2, assigned_treatment 
#>  
#> Outcome model: 
#> - Formula: outcome ~ assigned_treatment + x1 + x2 + followup_time + I(followup_time^2) + trial_period + I(trial_period^2) 
#> - Treatment variable: assigned_treatment 
#> - Adjustment variables: x1 x2 
#> - Model fitter type: te_stats_glm_logit 
#>  
#> Use fit_msm() to fit the outcome model 
#>  
#> Outcome data 
#> N: 1558 observations from 89 patients in 18 trial periods 
#> Periods: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
#>          id trial_period followup_time outcome weight treatment    x1       x2
#>       <int>        <int>         <int>   <int>  <int>     <int> <int>    <num>
#>    1:     1            0             0       0      1         1     1 1.146148
#>    2:     1            0             1       0      1         1     1 1.146148
#>   ---                                                                         
#> 1557:    54           17             1       0      1         0     0 1.846423
#> 1558:    54           17             2       0      1         0     0 1.846423
#>       assigned_treatment sample_weight
#>                    <int>         <num>
#>    1:                  1             1
#>    2:                  1             1
#>   ---                                 
#> 1557:                  1             1
#> 1558:                  1             1

# load_expanded_data can subset the data before sampling
load_expanded_data(
  trial_itt_csv,
  p_control = 0.2,
  period = 1:20,
  subset_condition = "followup_time %in% 1:20 & x2 < 1",
)
#> Warning: The following periods don't exist in the data and were omitted: 18, 19, 20
#> Trial Sequence Object 
#> Estimand: Intention-to-treat 
#>  
#> Data: 
#>  - N: 725 observations from 89 patients 
#>         id period treatment    x1           x2    x3        x4   age      age_s
#>      <int>  <int>     <num> <num>        <num> <int>     <num> <num>      <num>
#>   1:     1      0         1     1  1.146148362     0 0.7342030    36 0.08333333
#>   2:     1      1         1     1  0.002200337     0 0.7342030    37 0.16666667
#>  ---                                                                           
#> 724:    99      6         1     1 -0.033762356     1 0.5752681    71 3.00000000
#> 725:    99      7         0     0 -1.340496520     1 0.5752681    72 3.08333333
#>      outcome censored eligible time_on_regime    wt
#>        <num>    <int>    <num>          <num> <num>
#>   1:       0        0        1              0     1
#>   2:       0        0        0              1     1
#>  ---                                               
#> 724:       0        0        0              1     1
#> 725:       1        0        0              2     1
#>  
#> IPW for informative censoring: 
#>  - No weight model specified 
#>  
#> Sequence of Trials Data: 
#> - Chunk size: 500 
#> - Censor at switch: FALSE 
#> - First period: 0 | Last period: Inf 
#>  
#> A TE Datastore CSV object 
#> N: 1558 observations 
#> Periods: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
#> Path: /tmp/Rtmp6r0dfl/trial_itt/trial_csvs 
#> Columns: id, trial_period, followup_time, outcome, weight, treatment, x1, x2, assigned_treatment 
#>  
#> Outcome model: 
#> - Formula: outcome ~ assigned_treatment + x1 + x2 + followup_time + I(followup_time^2) + trial_period + I(trial_period^2) 
#> - Treatment variable: assigned_treatment 
#> - Adjustment variables: x1 x2 
#> - Model fitter type: te_stats_glm_logit 
#>  
#> Use fit_msm() to fit the outcome model 
#>  
#> Outcome data 
#> N: 129 observations from 20 patients in 12 trial periods 
#> Periods: 1 2 3 4 5 6 7 8 9 10 11 14 
#> Subset condition: followup_time %in% 1:20 & x2 < 1 
#> Sampling control observations with probability: 0.2 
#>         id trial_period followup_time outcome weight treatment    x1         x2
#>      <int>        <int>         <int>   <int>  <int>     <int> <int>      <num>
#>   1:    95            1             1       0      1         0     0 -1.5278278
#>   2:    49            1             1       0      1         0     0 -2.2687065
#>  ---                                                                           
#> 128:    54           11             8       0      1         0     1 -1.0192255
#> 129:    54           14             2       0      1         0     1  0.5460615
#>      assigned_treatment sample_weight
#>                   <int>         <num>
#>   1:                  0             5
#>   2:                  1             5
#>  ---                                 
#> 128:                  0             5
#> 129:                  0             5

# delete after use
unlink(trial_itt_dir, recursive = TRUE)